Cannabis -vs- Bile Duct Cancer
http://www.ncbi.nlm.nih.gov/pubmed/19916793: Currently, only gemcitabine plus platinum demonstrates the considerable activity for cholangiocarcinoma. The anticancer effect of Delta (9)-tetrahydrocannabinol (THC), the principal active component of cannabinoids has been demonstrated in various kinds of cancers. We therefore evaluate the antitumor effects of THC on cholangiocarcinoma cells. Both cholangiocarcinoma cell lines and surgical specimens from cholangiocarcinoma patients expressed cannabinoid receptors. THC inhibited cell proliferation, migration and invasion, and induced cell apoptosis. THC also decreased actin polymerization and reduced tumor cell survival in anoikis assay. pMEK1/2 and pAkt demonstrated the lower extent than untreated cells. Consequently, THC is potentially used to retard cholangiocarcinoma cell growth and metastasis.
http://www.ncbi.nlm.nih.gov/pubmed/21115947: The endocannabinoid system has been involved in the modulation of neural stem cells proliferation, survival and differentiation as well as in the generation of new oligodendrocyte progenitors in the postnatal brain. The present work aims to test the effect of the synthetic Type 1 and Type 2 cannabinoid receptor agonist WIN55212-2 on these processes in the context of neonatal rat brain hypoxia-ischemia (HI).
Our findings reveal that WIN55212-2 promotes remyelination of the injured external capsule, increasing the number of NG2+ early oligodendrocyte progenitors 7 days after HI in this area and the number of APC+ mature oligodendrocytes in the injured striatum 14 and 28 days after HI. WIN55212-2 also increases cell proliferation and protein expression of the neuroblast marker doublecortin in the subventricular zone 7 days after neonatal HI as well as the number of newly generated neuroblasts (5-bromodeoxyuridine+/doublecortin+ cells) in the ipsilateral striatum 14 days after HI. Our results suggest that the activation of the endocannabinoid system promotes white and gray matter recovery after neonatal HI injury.