Cannabis -vs- Huntington's Disease

​​​​​​cannabis data.org

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949444: Cannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.2 that preserves the ability to activate PPARγ and analyzed its neuroprotective activity. This compound exerted a prosurvival action in progenitor cells during neuronal differentiation, which was prevented by a PPARγ antagonist, without affecting neural progenitor cell proliferation. In addition, VCE-003.2 attenuated quinolinic acid (QA)-induced cell death and caspase-3 activation and also reduced mutant huntingtin aggregates in striatal cells. The neuroprotective profile of VCE-003.2 was analyzed using in vivo models of striatal neurodegeneration induced by QA and 3-nitropropionic acid (3NP) administration. VCE-003.2 prevented medium spiny DARPP32+ neuronal loss in these Huntington’s-like disease mice models improving motor deficits, reactive astrogliosis and microglial activation. In the 3NP model VCE-003.2 inhibited the upregulation of proinflammatory markers and improved antioxidant defenses in the brain. These data lead us to consider VCE-003.2 to have high potential for the treatment of Huntington’s disease (HD) and other neurodegenerative diseases with neuroinflammatory traits.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033945The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.  The transition of findings from bench to bedside and the extension of results from small clinical trials should be on the research agenda for the near future. Because treatment strategies for dementia are so preliminary at the current state of knowledge and the need for a cure is so desperate, it is worth pursuing the quest for one or more cannabinoid compounds in the field.


https://www.ncbi.nlm.nih.gov/books/NBK230711For the most part, the logical categories for the medical use of marijuana are not based on particular diseases but on symptoms—such as nausea, appetite loss, or chronic pain—each of which can be caused by various diseases or even by treatments for diseases. This chapter is therefore organized by symptoms rather than by diseases. There are eight sections. The first section explains clinical trials, the following five deal with specific symptoms and conditions, and the last two summarize the medical benefits of marijuana and cannabinoids. The five sections on symptoms and conditions are as follows: pain, nausea and vomiting, wasting syndrome and appetite stimulation, neurological symptoms (including muscle spasticity), and glaucoma.

The Institute of Medicine (IOM) study team received reports of more than 30 different medical uses of marijuana, more than could be carefully reviewed in a report of this length; even more uses are reported else-where.62,63 For most of the infrequently mentioned medical uses of marijuana there are only a few anecdotal reports. This report reviews only the most prominent symptoms that are reportedly relieved by marijuana. However, many of those diseases not reviewed here share common symptoms, such as pain, nausea and vomiting, and muscle spasms, which might be relieved by cannabinoid drugs.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202504Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson's disease, Huntington's disease, Tourette's syndrome, Alzheimer's disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable - instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and - in cases where it is impossible to separate the desired clinical action and the psychoactivity - just to monitor these side effects carefully.


https://www.ncbi.nlm.nih.gov/pubmed/10627163:   Central cannabinoid receptors are densely located in the output nuclei of the basal ganglia (globus pallidus, substantia nigra pars reticulata), suggesting their involvement in the regulation of motor activity. Furthermore, there is evidence that endogenous cannabinoid transmission plays a role in the manipulation of other transmitter systems within the basal ganglia by increasing GABAergic transmission, inhibiting glutamate release and affecting dopaminergic uptake. Most hyperkinetic and hypokinetic movement disorders are caused by a dysfunction of basal ganglia-thalamo-cortical loops. It has been suggested that an endogenous cannabinoid tone participates in the control of movements and, therefore, the central cannabinoid system might play a role in the pathophysiology of these diseases. During the last years in humans a limited number of clinical trials demonstrated that cannabinoids might be useful in the treatment of movement disorders. Despite the lack of controlled studies there is evidence that cannabinoids are of therapeutic value in the treatment of tics in Tourette syndrome, the reduction of levodopa-induced dyskinesia in Parkinson s disease and some forms of tremor and dystonia. It can be speculated that cannabinoid antagonists might be useful in the treatment of chorea in Huntington s disease and hypokinetic parkinsonian syndromes.